</>Glue
BLOG
Back to Blog

future of ai in software engineering

51 posts

blogengineer
08-Feb-2026

How to Use AI for User Stories: Complete Implementation Guide

AI can write user stories in seconds, but most are disconnected from your codebase. Here's how to generate stories that match your actual code capabilities.

blogengineer
08-Feb-2026

AI for Software Development FAQ: Transform Your Workflow

Honest answers to common questions about AI coding tools. Learn how context-aware platforms solve problems that ChatGPT and Copilot can't touch.

blogengineer
08-Feb-2026

Complete Guide to AI for Software Development: Transform Your Workflow

AI coding tools promise to boost productivity, but most teams struggle with context and code quality. Here's how to actually integrate AI into your workflow.

blogengineer
08-Feb-2026

Complete Guide to AI and Software Development: From Chaos to Code

AI assistants write code fast. Your codebase becomes a mess faster. Here's how to maintain control when AI is writing half your code.

blogengineer
08-Feb-2026

Cloud-Native Development: Why Serverless and Kubernetes Are the Future

Cloud-native isn't just containers and functions. It's a fundamental shift in how we build, deploy, and reason about systems. Here's what that means.

blogengineer
08-Feb-2026

Agentic AI FAQ: Your Complete Guide to Autonomous Agents

Autonomous AI agents can write code, debug issues, and ship features. Here's what actually works, what doesn't, and how to give agents the context they need.

blogengineer
08-Feb-2026

I Tested Context Engineering for 30 Days — Here's What Happened

I gave AI agents proper context for 30 days. The results: 40% faster onboarding, 60% fewer bugs, and tools that actually understand our codebase.

blogengineer
08-Feb-2026

AI for Software Development: What No One Tells You

AI writes code fast but can't understand your codebase. Here's what breaks when you ship AI-generated code—and how to fix the intelligence gap.

blogengineer
08-Feb-2026

From Whiteboard to Code Graphs: Building an AI Context Layer

Architecture diagrams are lies the moment you draw them. Here's how to build living code graphs that actually reflect your system—and why AI needs them.

blogengineer
08-Feb-2026

AI Product Management: Ideas That Will Dominate 2025

Product managers need code awareness, not more dashboards. Here's what separates winning AI PMs from those drowning in feature backlogs in 2025.

blogengineer
08-Feb-2026

AI for Software Development: 8 Essential FAQs Every Developer Needs

Most developers ask the wrong questions about AI coding tools. Here are the 8 questions that actually matter—and why context is the real problem.

blogengineer
08-Feb-2026

DevSecOps Evolution FAQ: AI-Powered Security for Modern Development

DevSecOps is shifting from rule-based scanning to AI-powered analysis. Here's what actually works when securing modern codebases at scale.

blogengineer
08-Feb-2026

Why Claude Code Fails: AI Tools That Actually Work for Engineering Teams

Claude and Copilot fail on real codebases because they lack context. Here's why AI coding tools break down—and what actually works for complex engineering tasks.

guideengineer
08-Feb-2026

The Complete AI Context Engineering Toolkit: Essential Tools

blogengineer
08-Feb-2026

The AI Development Productivity Mistake Killing Engineering Teams

AI coding tools promise 10x productivity but deliver 10x confusion instead. The problem isn't the AI—it's the missing context layer your team ignored.

blogengineer
08-Feb-2026

DevSecOps FAQ: AI for Software Development Security

Security tools scan for known vulnerabilities but miss architectural flaws. AI needs codebase context to understand real attack surfaces and data flows.

blogengineer
08-Feb-2026

AI for Software Development FAQ: The Shift-Everywhere Approach

Shift-left is dead. Modern AI requires code intelligence at every stage. Here's what actually works when AI needs to understand your entire codebase.

blogengineer
08-Feb-2026

AI for Software Development: Hidden Truths Nobody Tells You

AI coding assistants promise magic but deliver mediocrity without context. Here's what vendors won't tell you about hallucinations, costs, and the real solution.

blogpm
08-Feb-2026

Best AI Tools for Product Managers in 2026

The best PM tools now understand code, not just tickets. Here's what actually matters for product decisions in 2026—and what's just noise.

blogpm
08-Feb-2026

AI Kanban Board: Smart Task Management for Engineering Teams

Traditional kanban boards track tickets. AI kanban boards track code, dependencies, and blast radius. Here's why your team needs the upgrade.

blogcto
08-Feb-2026

Enterprise AI Implementation: From Pilot to Production at Scale

Most enterprise AI pilots never reach production. The real blocker isn't the AI—it's understanding your own codebase well enough to integrate it safely.

blogengineer
08-Feb-2026

Knowledge Graphs for Codebases: The Future of Developer Tools

Why representing your codebase as a knowledge graph changes everything — from AI assistance to onboarding. The data model matters more than the tools.

blogcto
08-Feb-2026

How Top Engineering Teams Use Dependency Graphs to Ship Faster

Dependency graphs aren't just debugging tools. Smart teams use them to parallelize work, prevent merge conflicts, and cut release cycles by weeks.

blogengineer
08-Feb-2026

Understanding and Visualizing Code Architecture for Better Development

Architecture diagrams lie. Learn why static diagrams fail, how to visualize code architecture that stays current, and tools that generate views from actual code.

blogpm
08-Feb-2026

AI-Driven Project Management: The Complete Playbook for Product Teams

Most AI project tools are glorified chatbots. Here's how to actually use AI to understand what's happening in your codebase and ship faster.

blogengineer
08-Feb-2026

Building a Blast Radius Oracle: How I Designed Impact Analysis

I built Glue's blast radius analysis by mapping files to features, dependencies, and impact zones. Here's why most change analysis tools fail.

blogengineer
08-Feb-2026

Why Smart Engineers Fail at Requirements Despite Perfect Templates

You have the perfect requirements template. You still ship the wrong thing. The problem isn't your process—it's that you don't understand your own codebase.

technicalengineer
08-Feb-2026

Building AI Coding Agents That Actually Understand Your Codebase

AI coding agents fail because they lack context. Here's how to give them the feature maps, call graphs, and ownership data they need to work.

guideengineer
08-Feb-2026

Complete Guide to AI for Software Development in 2026

AI coding tools generate code fast but lack context. Here's what actually works in 2026 and why context-aware platforms change everything.

guideengineer
08-Feb-2026

Context Engineering: The 2025 Guide to Building Production-Ready AI

Stop building AI features that hallucinate in production. Context engineering is the difference between demos that wow and systems that ship.

blogpm
08-Feb-2026

Why Vibe-Based Coding Fails: The Hidden Product Crisis

Your engineers ship fast, but nobody uses what they build. Here's why "trust the vibe" development destroys product-market fit.

blogcto
08-Feb-2026

AI for Software Development: Beyond Shift-Left to Shift-Everywhere

Shift-left is dead. Modern AI doesn't just catch bugs earlier—it understands your entire codebase at every stage. Here's what shift-everywhere actually means.

blogpm
08-Feb-2026

AI for Product Managers: 8 Essential FAQs That Reveal the Future

Most PMs ask the wrong questions about AI. Here are 8 that actually matter — and how code intelligence gives you answers marketing can't fake.

blogcto
08-Feb-2026

Low-Code/No-Code Platforms: Why the $65B Market Boom Matters for Engineers

Low-code platforms promise speed but deliver technical debt nobody talks about. Here's what the $65B market boom means for engineering teams.

blogpm
08-Feb-2026

Future of AI for Product Managers: Essential Strategies for 2025

AI won't replace PMs. But PMs who understand their codebase through AI will replace those who don't. Here's what actually matters in 2025.

blogcto
08-Feb-2026

Context-Aware Development Tools: The Mistake Killing 73% of Team Productivity

Your team's AI coding tools generate garbage because they're context-blind. Here's why 73% of AI code gets rejected and how context awareness fixes it.

blogpm
08-Feb-2026

ClickUp vs Monday vs Asana: AI Features Compared for Product Teams

ClickUp, Monday, and Asana all have AI. None understand your code. Here's what their AI actually does—and what's still missing for engineering teams.

blogcto
05-Feb-2026

Sprint Planning Without 3-Hour Meetings

AI-generated dev plans with file-level tasks based on actual codebase architecture. How to cut sprint planning overhead by 50%.

Fatima Zahra Ghaddar
blogcto
04-Feb-2026

AI Development Productivity Tips: Avoid the 73% Failure Rate

Most AI tool adoptions fail to deliver ROI. Here are the productivity patterns that actually work for engineering teams.

Fatima Zahra Ghaddar
blogcto
03-Feb-2026

Code Ownership at Scale: Who Knows What in Your Codebase

CODEOWNERS files are always stale. Git history tells the truth about who actually maintains, reviews, and understands each part of your codebase.

Tariro Mukandi
blogengineer
03-Feb-2026

Vibe Coding Is Not Engineering

AI-generated prototypes are impressive demos. They're terrible production systems. Here's where vibe coding ends and real engineering begins.

Vivian M. Otieno
blogcto
03-Feb-2026

The Hidden Cost of Context Switching for Developers

Each context switch costs a developer 23 minutes to regain focus. In a typical day, that adds up to 2-3 hours of lost deep work.

Tariro Mukandi
blogcto
02-Feb-2026

What Engineering Leaders Get Wrong About AI Tool Adoption

Most teams measure AI tool success by adoption rate. The right metric is whether hard tickets get easier. Here's the framework that works.

Fatima Zahra Ghaddar
guidecto
02-Feb-2026

Spec Drift Detection: Stop Building Features Nobody Asked For

How spec drift silently derails engineering teams and how to detect it before you ship the wrong thing.

Tariro Mukandi
blogengineer
31-Jan-2026

The Developer Tool Stack in 2026: What's Changed

AI reshaped the developer tool landscape. Here's what the modern engineering stack looks like and where the gaps remain.

Vivian M. Otieno
blogcto
29-Jan-2026

How AI Is Changing Technical Interviews (And Why It Should)

LeetCode doesn't predict job performance. Codebase navigation and system understanding do. How interviews should evolve for the AI era.

Fatima Zahra Ghaddar
guideexecutive
28-Jan-2026

The CTO's Guide to AI Tool ROI

A framework for measuring actual return on AI coding tool investments. Spoiler: adoption rate is the wrong metric.

Vivian M. Otieno
guidecto
27-Jan-2026

How to Conduct an AI Readiness Assessment for Your Engineering Team

Before buying AI tools, understand where your team will actually benefit. A practical framework for assessing AI readiness.

Vivian M. Otieno
guideengineer
26-Jan-2026

How to Use AI for Code Review Without Losing the Human Element

AI can flag dependency issues and style violations. Humans should focus on architecture, business logic, and mentoring. Here's how to split the work.

Vivian M. Otieno
blogcto
24-Jan-2026

How Engineering Teams Should Prepare for AI-Native Development

AI-native development isn't about using more AI tools. It's about restructuring workflows around AI strengths and human judgment.

Vivian M. Otieno
technicalengineer
21-Jan-2026

Neuromorphic Computing FAQ: 8 Critical Questions About Brain-Inspired AI

Neuromorphic chips process data like the brain. What this means for AI applications, when it matters, and what developers need to know.

Manuel Rodriguez Castillo