</>Glue
BLOG
Back to Blog

machine learning for agile teams

16 posts

blogengineer
08-Feb-2026

Complete Guide to AI for Software Development: Transform Your Workflow

AI coding tools promise to boost productivity, but most teams struggle with context and code quality. Here's how to actually integrate AI into your workflow.

blogengineer
08-Feb-2026

Why Claude Code Fails: AI Tools That Actually Work for Engineering Teams

Claude and Copilot fail on real codebases because they lack context. Here's why AI coding tools break down—and what actually works for complex engineering tasks.

blogengineer
08-Feb-2026

Best Bolt.new Alternatives for Enterprise Teams in 2025

Bolt.new is great for prototypes, but enterprise teams need more. Here are the alternatives that actually handle production codebases at scale.

blogengineer
08-Feb-2026

AI Model Version Control Tools FAQ: Complete Automation Guide

Model version control isn't just git tags. Learn what actually works for ML teams shipping fast—from artifact tracking to deployment automation.

blogpm
08-Feb-2026

AI Kanban Board: Smart Task Management for Engineering Teams

Traditional kanban boards track tickets. AI kanban boards track code, dependencies, and blast radius. Here's why your team needs the upgrade.

blogpm
08-Feb-2026

AI-Driven Project Management: The Complete Playbook for Product Teams

Most AI project tools are glorified chatbots. Here's how to actually use AI to understand what's happening in your codebase and ship faster.

blogengineer
08-Feb-2026

Essential Developer Tools 2025: The Complete Productivity Stack

The tools you need to ship faster in 2025. From IDE to production, here's what works—and what most teams are missing between code and planning.

blogengineer
08-Feb-2026

Alternatives to Bolt.new: AI App Builders for Serious Teams

Bolt.new makes beautiful demos, but shipping production code is different. Here are better alternatives when you need something that won't break in two weeks.

blogcto
08-Feb-2026

Low-Code/No-Code Platforms: Why the $65B Market Boom Matters for Engineers

Low-code platforms promise speed but deliver technical debt nobody talks about. Here's what the $65B market boom means for engineering teams.

blogpm
08-Feb-2026

ClickUp vs Monday vs Asana: AI Features Compared for Product Teams

ClickUp, Monday, and Asana all have AI. None understand your code. Here's what their AI actually does—and what's still missing for engineering teams.

blogcto
06-Feb-2026

The Understanding Tax: Why Your Developers Spend 90 Minutes Per Ticket Before Writing Code

Engineering teams lose 20-35% of developer time to context acquisition. This invisible tax is baked into every estimate and accepted as normal. It shouldn't be.

Vaibhav Verma
blogcto
04-Feb-2026

AI Development Productivity Tips: Avoid the 73% Failure Rate

Most AI tool adoptions fail to deliver ROI. Here are the productivity patterns that actually work for engineering teams.

Fatima Zahra Ghaddar
guidecto
02-Feb-2026

Spec Drift Detection: Stop Building Features Nobody Asked For

How spec drift silently derails engineering teams and how to detect it before you ship the wrong thing.

Tariro Mukandi
blogcto
01-Feb-2026

Remote Engineering Teams: Solving the Knowledge Transfer Problem

Remote work broke ambient knowledge sharing. Here's how to rebuild it without forcing everyone back to the office.

Fatima Zahra Ghaddar
blogengineer
24-Jan-2026

The 10-Minute Codebase Audit: What to Check Before Joining a New Team

A quick checklist for evaluating codebase health, team practices, and knowledge risks before accepting an engineering role.

Tariro Mukandi
blogcto
24-Jan-2026

How Engineering Teams Should Prepare for AI-Native Development

AI-native development isn't about using more AI tools. It's about restructuring workflows around AI strengths and human judgment.

Vivian M. Otieno