</>Glue
BLOG
Back to Blog

ai powered application development

41 posts

blogengineer
08-Feb-2026

AI for Software Development FAQ: Transform Your Workflow

Honest answers to common questions about AI coding tools. Learn how context-aware platforms solve problems that ChatGPT and Copilot can't touch.

blogengineer
08-Feb-2026

Complete Guide to AI for Software Development: Transform Your Workflow

AI coding tools promise to boost productivity, but most teams struggle with context and code quality. Here's how to actually integrate AI into your workflow.

blogengineer
08-Feb-2026

Complete Guide to AI and Software Development: From Chaos to Code

AI assistants write code fast. Your codebase becomes a mess faster. Here's how to maintain control when AI is writing half your code.

blogengineer
08-Feb-2026

Cloud-Native Development: Why Serverless and Kubernetes Are the Future

Cloud-native isn't just containers and functions. It's a fundamental shift in how we build, deploy, and reason about systems. Here's what that means.

blogengineer
08-Feb-2026

Agentic AI FAQ: Your Complete Guide to Autonomous Agents

Autonomous AI agents can write code, debug issues, and ship features. Here's what actually works, what doesn't, and how to give agents the context they need.

blogengineer
08-Feb-2026

AI for Software Development: What No One Tells You

AI writes code fast but can't understand your codebase. Here's what breaks when you ship AI-generated code—and how to fix the intelligence gap.

blogengineer
08-Feb-2026

AI for Software Development: 8 Essential FAQs Every Developer Needs

Most developers ask the wrong questions about AI coding tools. Here are the 8 questions that actually matter—and why context is the real problem.

blogengineer
08-Feb-2026

DevSecOps Evolution FAQ: AI-Powered Security for Modern Development

DevSecOps is shifting from rule-based scanning to AI-powered analysis. Here's what actually works when securing modern codebases at scale.

blogengineer
08-Feb-2026

The AI Development Productivity Mistake Killing Engineering Teams

AI coding tools promise 10x productivity but deliver 10x confusion instead. The problem isn't the AI—it's the missing context layer your team ignored.

blogengineer
08-Feb-2026

DevSecOps FAQ: AI for Software Development Security

Security tools scan for known vulnerabilities but miss architectural flaws. AI needs codebase context to understand real attack surfaces and data flows.

blogengineer
08-Feb-2026

AI for Software Development FAQ: The Shift-Everywhere Approach

Shift-left is dead. Modern AI requires code intelligence at every stage. Here's what actually works when AI needs to understand your entire codebase.

blogengineer
08-Feb-2026

AI for Software Development: Hidden Truths Nobody Tells You

AI coding assistants promise magic but deliver mediocrity without context. Here's what vendors won't tell you about hallucinations, costs, and the real solution.

blogengineer
08-Feb-2026

AI Coding Workflow Optimization FAQ: Expert Answers Guide

Real answers to hard questions about making AI coding tools actually work. From context windows to team adoption, here's what nobody tells you.

blogengineer
08-Feb-2026

Best Bolt.new Alternatives for Enterprise Teams in 2025

Bolt.new is great for prototypes, but enterprise teams need more. Here are the alternatives that actually handle production codebases at scale.

blogengineer
08-Feb-2026

Building Your First AI Agent with CrewAI: A Practical Guide

Stop writing boilerplate AI code. Learn how to build autonomous agents with CrewAI that actually understand your codebase and ship features faster.

blogpm
08-Feb-2026

Best AI Tools for Product Managers in 2026

The best PM tools now understand code, not just tickets. Here's what actually matters for product decisions in 2026—and what's just noise.

blogpm
08-Feb-2026

AI Kanban Board: Smart Task Management for Engineering Teams

Traditional kanban boards track tickets. AI kanban boards track code, dependencies, and blast radius. Here's why your team needs the upgrade.

blogengineer
08-Feb-2026

Understanding and Visualizing Code Architecture for Better Development

Architecture diagrams lie. Learn why static diagrams fail, how to visualize code architecture that stays current, and tools that generate views from actual code.

blogcto
08-Feb-2026

Best AI Coding Assistants FAQ: Expert Security & Implementation Guide

CTOs ask the hard questions about AI coding tools. We answer them with real security implications, implementation strategies, and context architecture.

blogengineer
08-Feb-2026

Alternatives to Bolt.new: AI App Builders for Serious Teams

Bolt.new makes beautiful demos, but shipping production code is different. Here are better alternatives when you need something that won't break in two weeks.

technicalengineer
08-Feb-2026

API Design for AI-First Applications: Patterns That Scale

AI applications demand different API patterns. Here's how to design endpoints that handle streaming, context windows, and unpredictable load without breaking.

technicalengineer
08-Feb-2026

Building AI Coding Agents That Actually Understand Your Codebase

AI coding agents fail because they lack context. Here's how to give them the feature maps, call graphs, and ownership data they need to work.

guideengineer
08-Feb-2026

Complete Guide to AI for Software Development in 2026

AI coding tools generate code fast but lack context. Here's what actually works in 2026 and why context-aware platforms change everything.

blogengineer
08-Feb-2026

Cloud-Native Development FAQ: Serverless vs Kubernetes Guide

Serverless or Kubernetes? This guide cuts through the hype with real tradeoffs, cost breakdowns, and when each actually makes sense for your team.

guideengineer
08-Feb-2026

Context Engineering: The 2025 Guide to Building Production-Ready AI

Stop building AI features that hallucinate in production. Context engineering is the difference between demos that wow and systems that ship.

blogpm
08-Feb-2026

Why Vibe-Based Coding Fails: The Hidden Product Crisis

Your engineers ship fast, but nobody uses what they build. Here's why "trust the vibe" development destroys product-market fit.

blogcto
08-Feb-2026

AI for Software Development: Beyond Shift-Left to Shift-Everywhere

Shift-left is dead. Modern AI doesn't just catch bugs earlier—it understands your entire codebase at every stage. Here's what shift-everywhere actually means.

guideengineer
08-Feb-2026

Complete Guide to AI SDKs: From Code to Product Success

Most engineers pick an AI SDK and pray it works. Here's how to choose, integrate, and ship AI features without destroying your existing codebase.

blogpm
08-Feb-2026

AI for Product Managers: 8 Essential FAQs That Reveal the Future

Most PMs ask the wrong questions about AI. Here are 8 that actually matter — and how code intelligence gives you answers marketing can't fake.

technicalengineer
08-Feb-2026

MCP: The USB-C for AI Apps That Killed Our Glue Code Hell

Model Context Protocol lets AI tools talk to your code, databases, and docs without building custom integrations. Here's why it matters more than the LLM.

blogpm
08-Feb-2026

Future of AI for Product Managers: Essential Strategies for 2025

AI won't replace PMs. But PMs who understand their codebase through AI will replace those who don't. Here's what actually matters in 2025.

blogcto
08-Feb-2026

Context-Aware Development Tools: The Mistake Killing 73% of Team Productivity

Your team's AI coding tools generate garbage because they're context-blind. Here's why 73% of AI code gets rejected and how context awareness fixes it.

blogengineer
08-Feb-2026

AI Code Optimizer: Fix, Refactor, Improve — What Actually Works in 2026

AI code optimizers promise magic. Most deliver chaos. Here's what actually works when you combine AI with real code intelligence in 2026.

blogcto
05-Feb-2026

Onboarding Developers: From 6 Months to 2 Weeks

How AI-powered codebase context and code tours transform developer onboarding from months of tribal knowledge transfer to weeks of guided exploration.

Vivian M. Otieno
blogcto
04-Feb-2026

AI Development Productivity Tips: Avoid the 73% Failure Rate

Most AI tool adoptions fail to deliver ROI. Here are the productivity patterns that actually work for engineering teams.

Fatima Zahra Ghaddar
blogengineer
28-Jan-2026

Lovable vs Dev: Migration Comparison for AI-Powered Development Platforms

Side-by-side comparison of Lovable and Dev for AI-powered application building. When to use each and how they compare to code intelligence tools.

Vivian M. Otieno
guideengineer
25-Jan-2026

Understanding Your Codebase in 2026: The Complete Guide

Everything you need to know about codebase understanding tools, techniques, and workflows. From grep to AI-powered intelligence.

Tariro Mukandi
blogcto
24-Jan-2026

How Engineering Teams Should Prepare for AI-Native Development

AI-native development isn't about using more AI tools. It's about restructuring workflows around AI strengths and human judgment.

Vivian M. Otieno
technicalengineer
24-Jan-2026

Building Scalable AI Applications: Architecture Patterns That Actually Work

Practical architecture patterns for AI-powered applications — from RAG pipelines to agent orchestration. Lessons from building production AI systems.

Vivian M. Otieno
technicalengineer
21-Jan-2026

Neuromorphic Computing FAQ: 8 Critical Questions About Brain-Inspired AI

Neuromorphic chips process data like the brain. What this means for AI applications, when it matters, and what developers need to know.

Manuel Rodriguez Castillo
blogpm
20-Jan-2026

IBM AI Product Manager Certificate Review: Is It Worth It in 2026?

An honest review of the IBM AI Product Manager Professional Certificate.

Fatima Zahra Ghaddar